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ABSTRACT: The aim of the present investigation is to
study both the influence of particle weight fraction (0–50%)
and the effect of the notch length on the static mechanical
properties of aluminum particle epoxy composites. Experi-
mental results in both cases were compared with three dif-
ferent theoretical models, previously developed by the first
author and presented in a series of publications. First, for
the evaluation of the maximum strength the particle section-
ing model (PSM) was applied. Next, for the evaluation of
the elastic modulus as a function of aluminum powder

weight fraction, the interphase model (IM) was applied.
Finally, in the case of notches’ length influence, the residual
property model, (RPM), was applied. This model can be
applied for the description of the residual behavior of mate-
rials after any type of damage. In all cases, predicted values
showed a satisfactory agreement with experimental findings.
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INTRODUCTION

The use of composite materials in engineering appli-
cations is rapidly growing, mainly because of their
specific high strength and their good resistance to
corrosion and weathering. Their performance in
structures compete the one of the traditional materi-
als, such as metals, wood, etc. A composite system
usually consists of stiff inclusions, embedded in a
soft matrix with completely different elastic proper-
ties. During processing there is a third phase devel-
oped between the prime constituents, and the elastic
properties of this phase depend on those of the
prime materials.

The present work is an effort to study the static
bending behavior of aluminum-filled epoxy particu-
late composites with and without notches and also
to correlate experimental results with respective the-
oretical predictions based on micromechanics.1–12

Several semi-empirical models/expressions devel-
oped by Papanicolaou et al. and by others were
used and their predictions were also compared with
respective experimental results.13–26

First, for the evaluation of the maximum strength
the particle sectioning model (PSM) was applied.13

According to this model, each particle is divided into

an infinite number of coaxial cylinders and by apply-
ing Cox’s theory the mean stress developed in each
section of the particle may be calculated. Next, for
the evaluation of the elastic modulus as a function of
aluminum powder weight fraction, the interphase
model was applied.14 This model takes into account
the existence of an interphase developed between the
two main phases. The interphase constitutes an
important parameter influencing the behavior of any
composite material. The interphase layer which is
developed in the area between the matrix and filler is
characterized by different physico-chemical proper-
ties from those of the constituent phases and variable
ones along its thickness. Predicted values were in sat-
isfactory agreement with almost all percentages of
aluminum particles.Finally, in the case of notches’
length influence, the residual property model (RPM)
was applied. This model can be applied for the
description of the residual behavior of materials after
damage. As it has already been proved in previous
publications, the model gives satisfactory predictions
for the residual materials properties variations irre-
spectively of the cause of damage and the type of the
material considered at the time.15

PREDICTIVE MODELS

Predictive models for the elastic modulus

The mechanical properties of particulate-filled
composites are affected by a great number of geo-
metrical, topological, mechanical, etc. parameters.
Numerous past studies have been focused on the
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micromechanics of particulate filled composites.16–26

Unfortunately, the discrepancies between theoretical
predictions and experimental data continue to limit
the understanding of these composite materials. In
all existing theories, difficulty has been encountered
in separating such variables as interfacial adhesion,
particle agglomeration, dispersion, and particle
shape, all of which affect mechanical behavior. Other
parameters such as polymerization-induced stresses
and shear effects around filler particles complicate
further the prediction.13–28

The oldest existing theory refers to inclusions in a
viscous matrix and was developed by Einstein.16 He
considered rigid spherical non-solvated particles in a
Newtonian viscous fluid and his final expression for
the prediction of the effective modulus of the partic-
ulate composite is:

Ec

Em
¼ 1þ 2:5Vf (1)

where Ec and Em are the elastic moduli for the com-
posite and the matrix, respectively, and Vf , the fil-
ler-volume fraction.

An extension of Einstein’s equation is that devel-
oped by Guth and Smallwood.17,18

Ec

Em
¼ 1þ 2:5Vf þ 14:1V2

f (2)

Next, an equation based on a mathematical theory
and valid for polymer-particulate composites when
in glassy state is due to Kerner.19 The final expres-
sion of this theory as applied to rigid fillers is:

Ec

Em
¼ 1þ Vf

Vm

15ð1� vmÞ
8� 10vm

� �
(3)

where vm, is the matrix Poisson’s ratio and Vm and Vf

is the matrix and filler volume fraction, respectively.
The effect of filler agglomeration is taken into

account in the following equation proposed by
Mooney.20

Ec

Em
¼ exp

2:5Vf

1� sVf

� �
(4)

where s is a ‘‘crowding factor’’ taking values in the
range 1 to 2 depending on the type of particle distri-
bution into the polymer matrix. For closely packed
spheres of uniform size, s ¼ 1.35.

Another equation is that proposed by Eilers and
Van Dyck21:

Ec

Em
¼ 1þ kVf

1� S0Vf

� �2

(5)

where k and S0 are constants usually equal to 1.25
and 1.20, respectively.
Phillips suggested the following expression for the

Young’s modulus of particulate composites assum-
ing a simple model based on a cubic array of equiv-
alent volume fraction to spherical particles dispersed
in a continuous phase22:

Ec

Em
¼ X2

1� Xð1� Em=Ef Þ þ ð1� X2Þ (6)

X can be related to the volume fraction of the dis-
continuous phase, Vf, by an expression of the form:

X ¼ ðPVf Þ1=3 (7)

where P is a disposable parameter described as
the ‘‘relative volume fraction,’’ since it is the ratio:
(volume of equivalent cubic particles)/(volume of
spherical particles).
Phillips has shown that P ¼ 1 for cubic particles,

and that for spherical particles P is 6/p ¼ 1.91 and
2=

ffiffiffi
3

p
p ¼ 0.37 for the upper and the lower bound,

respectively.

Predictive models for the mechanical strength

In the case of a brittle thermoset polymer, such as
epoxy or thermoset polyester, that has relatively
low-fracture energy, the addition of fillers tends to
increase the fracture toughness and the maximum
strength at low filler weight fractions. However,
above a critical volume fraction, both the fracture
energy and the maximum strength decrease. The criti-
cal weight fraction at which the maximum fracture
energy and/or the maximum strength are attained
depends on the filler particle size as well as the inter-
facial bond between the fillers and the polymer
matrix. The larger the particle size, the greater the crit-
ical volume fraction as well as the maximum fracture
energy, although the effect of the latter is somewhat
conflicting. The maximum strength of a filled polymer
is more difficult to predict than the modulus. Unless
there is a good bonding between the fillers and the
polymer, the fillers do not share much load with the
polymer; instead, they merely act as sources of stress
concentration. In the case of no adhesion, the mechan-
ical strength of the filled polymer decreases with
increasing filler volume fraction.
There have also been reported some equations for

estimating the tensile strength of particulate compo-
sites. One the most common equations concerning the
composition dependence of mechanical properties of
composites is Leidner and Woodhams equation23:

ruc ¼ 0:83PaVb þ Krumð1� VbÞ (8)

where: Pa ¼ 10.62 MPa, K ¼ 0.8 or 0.9
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Piggot and Leidner suggested the following equation24:

ruc ¼ rum 1� 0:5V0:6
b

� �
(9)

Another equation was suggested by Nicolais and
Mashelkar25:

ruc ¼ rum � bVn
b (10)

where b is a constant, which can be assumed either
positive or negative value.

And finally Schrager suggested26:

ruc ¼ rum exp �2:66Vbð Þ (11)

In eqs. (8)–(11), rum is the ultimate strength of the
matrix material; ruc is the maximum ultimate load
carried by the composite and Vb is the filler volume
fraction.

The interphase model

During manufacturing of particle-reinforced poly-
mers (PRPs), interphases are developed lying at the
close vicinity of the surface of reinforcing fillers. In
common PRPs, these intermediate material phases
have complex structure, contain voids, microcracks,
and several impurities, while matrix macromolecules
belonging to these areas are characterized by a
reduced mobility. The interphase being separating
the distinct filler and matrix phases is a region in
which filler and matrix are mechanically and chemi-
cally combined or indistinct. It may be a diffusion
zone or a chemical reaction zone and thus may be
studied within the context of a composite material
system that acts as a single entity. This system exists
when two or more distinct materials interact synerg-
istically to produce a superior material.

A theoretical model for the prediction of the
elastic modulus and the Poisson’s ratio of polymer
matrix particulates which considers the existence of a
particle-matrix inhomogeneous interphase has been
developed by Papanicolaou et al.27,28 According to
this model, the interphase thickness Dri and the inter-
phase volume fraction, Vi, is first calculated as:

rfþDri
rf

� �3

�1 ¼ kVf

1� Vf

Vi ¼
3DriVf

rf
ð12Þ

where the parameter k, is given by:

k ¼ 1� DCf
p

DC0
p

ri ¼ rf þ Dri ð13Þ

where rf and ri are the outer radii of the filler and
the interphase, respectively.
In which DCf

p and DC0
p correspond to the abrupt

jump in heat capacity observed at the transition
region for the filled and the unfilled polymer
respectively.
Then the interphase Poisson’s ratio, vi and the

composite Poisson’s ratio, vc can be calculated as:

viðrÞ ¼
vf � vm

ðri � rf Þ2
r2 þ 2ðvm � vf Þri

ðri � rf Þ2
r

þ vf ri
2 þ vmrf

2 � 2vmrf ri

ðri � rf Þ2
ð14Þ

vc ¼ vfVf þ vmVm þ viVi; (15)

Last equation can be written as:

vc ¼ vf vf þ vmVm þ 3Vf

rm3

Zri
rf

vir
2 dr (16)

Finally, the modulus of the composite, Ec, can be
calculated by the relation:

ð1� 2vcÞ
Ec

¼ ð1þ vf Þ2ð1� 2vmÞ2
ð1� 2vf Þð1þ vmÞ2

Vf þ ð1� 2vmÞ
Em

Vm

þ 3ð1� 2vmÞ2Vf

ð1þ 2vmÞr3f

Zri
rf

ð1þ viÞ2
ð1� 2viÞEi

r2 dr ð17Þ

The particle sectioning model

In 1992, Papanicolaou et al. suggested a theoretical
model that can predict the maximum stress of a
composite reinforced with particles. According to
this model, a discretization of a model spherical par-
ticle into infinite number of fibers was suggested
(Fig. 1). Next, Coxs’ theory for the calculation of
fibers’ stresses, for an applied stress on a random
cross section, which is located at distance x from the
center of a random fiber, i, having a fiber length of
2li, was applied (Fig. 2). Stress, ri, along the ith fiber
is then calculated from the following equation (E is
the elastic Modulus of the composite):

ri ¼ Eem 1� cos hðkxÞ
cos hðkliÞ

� �
(18)

where: k ¼ 2G

r2 ln 2 Ef�Emð Þ½ �12
while G is the shear modu-

lus, Ef and Em are the elastic moduli of the fiber and
matrix, respectively, r is the fiber radius, and em is
the mean strain developed.
As Figure 1 depicts, li, can be calculated from the

following equation:
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li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

q

The average stress developed on the ith fiber can
then be calculated through integration as:

Z1i
�1i

ridx ¼
Z1i
�1i

Eem 1� cos hðkxÞ
cos hðkliÞ

� �
dx )

1

2r

Zr

�r

�ridy ¼ rm
1

2r

Zr

�r

Ef � Em

Em
1� tan hðk ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � y2
p Þ

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

p
" #

� dy

(19)

where 1
2r

R r
�r

�ri dy is the total mean stress �rtotal, devel-
oped in the particle.

Then, if B is taken as:

B ¼ 1

2r

Zr

�r

Ef � Em

Em
1� tan hðk ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � y2
p Þ

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

p
" #

� dy

Equation (19) can be written as:

�rtotal ¼ B � rm (20)

Now, if rm is replaced by the matrix ultimate
strength, rum, then eq. (20), can be written as:

rb ¼ B � rum (21)

from which the maximum particle stress, rb can be
calculated

The residual property model

The RPM model is a model developed by the CMG
group, University of Patras, and it is used for the

description of the residual behavior of polymers and
polymer-matrix composites, after damage. As it was
shown, the model gives accurate predictions for the
residual materials properties variation irrespective of
the cause of damage and of the type of material con-
sidered at the time. In the case of damage due to
water absorption, impact, repeated impact, bending
to a crack-like edge centred notch, and tension in
nanocomposites, the RPM model predicts well the
observed variation.
The final expression for the RPM model is:

Pr

P0
¼ s0 þ ð1� s0Þ expð�s0MÞ (22)

where Pr is the current value of the mechanical
property considered at any time of the damage pro-
cess, P0 is the value of the same property for the vir-
gin material (i.e., for the undamaged material), and
M is a function depended on the source of damage
and the property considered at the time. In the pres-
ent case, where three-point bending tests were per-
formed on specimens, Pr may represent one of the
following properties: (i.e., bending modulus), rmax

fracture (i.e., stress at fracture), or rmax (i.e., bending
strength).
Also

s0 ¼ P1=P0 (23)

where P1 is the value of the property under damage
saturation conditions.
Concerning the function M, in the present case,

this is given by:

M ¼ a� c

h
ðfor the modulus predictionÞ; and (24)

M ¼ a� c

c
ðfor the strength predictionÞ: (25)

Figure 1 The proposed model subjected to tensile loading.

Figure 2 The stress (r1) in a cross section located at dis-
tance x1 from the center of the particulate of a random
fiber with length 2li.
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where: a ¼ notch length; h ¼ specimen thickness; c
¼ notch length threshold; i.e., the maximum notch
length where no damage effect on the material prop-
erties is observed (c ¼ 1 mm).

The boundary conditions are fulfilled, since

M ! 1 ) Pr

P0
! s0; (26)

M ! 0 ) Pr

P0
! 1 (27)

EXPERIMENTAL

Materials and manufacturing procedure

Aluminum fillers, used in the present investigation,
have a rather uniform granulometry with a mean di-
ameter of 63 lm and their density was 2.70 gr/ cm3

at 20�C by R&G. Polymer composite formulations
were prepared by mixing aluminum particles with
an epoxy resin (RENLAM CY 219). Aluminum (Vf ¼
0%, 2.3%, 4.7%, 7.3%, 10%, 12.9%, 16%, 19.3%,
22.9%, 26.7%) particles and resin were carefully
mixed for 30–40 min, to achieve uniform distribution
of grains in the matrix. Proper amounts of the curing
agent were then added. The aluminum-resin mixture

was then placed in a vacuum pump for 3 min to
reduce voids in the composite. Subsequently, the
mixture was poured in plexiglas moulds (120 � 110
� 2.86 mm3) of suitable capacity. Next, the filled
moulds were placed in an oven for the curing phase.
The following curing process was applied: tempera-
ture was raised at 5�C/h from ambient to 50�C and
maintained constant for approximately 24 h. Plates
were then removed from the molds and were subse-
quently cut to proper dimensions for three- point
bending tests. The samples were � 90 mm long,
12 mm wide and 2.85 6 0.01 mm thick.
Then it was machined a sharp edged notch into

the middle of the test specimen and then it was gen-
erated a natural crack by tapping on a new razor
blade placed in the notch. Notches’ length were 0, 2,
4, 6, 8, and 10 mm.

Static mechanical testing

Bending measurements were carried out with a con-
ventional Instron type tester (INSTRON 4301), at
room temperature. Specimens with a gauge length
of 63 mm were tested at a constant strain rate of
1 mm/min. At least five specimens were used for
each measurement and the average results were

Figure 3 SEM photomicrographs for the polymer epoxy reinforced particulate reinforced with 10% vf aluminum
particles.
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reported here. The repeatability of results confirms
the good manufacturing conditions of the specimens
as well as the appropriate selection of the curing
processing conditions.

SEM fractography (scanning electron microscopy)

To study the degree of aluminum particle dispersion
in the polymeric matrix, SEM photomicrographs
were taken and analyzed (scanning electron micro-
scope was JEOL JSN 5400p). Samples for SEM were
coated with 5–10 nm of gold prior to examination.
Figure 3 shows the tendency of aluminum (10% Vf.)
particles to agglomerate. This tendency depends on
both the nature of the constituent materials of the
composite, the fabrication procedure followed and
the conditions of manufacturing applied. From the
same figures, it can also be seen that aluminum par-
ticles have perfectly spherical shape of different
diameter.

Figures 4 and 5 depict polymer composites rein-
forced with 16% and 22.9% volume fraction of alu-
minum particles. From these photomicrographs,
when compared with those shown in Figure 3, it can
be observed that filler aggregation exists in all cases
and more specifically, as the volume fraction
increases, the number and the extent of agglomera-
tion increases too.

RESULTS AND DISCUSSION

Application of the PSM model

The variation of the flexural strength of the compos-
ite under investigation with the filler volume frac-
tion is shown in Figure 6. In the same figure, respec-
tive theoretical predictions have been plotted along
with the experimental results. The most important
observation is that the flexural strength decreases
almost continually with the volume fraction mainly
because of the agglomerations (Figs. 3–5). Also, it is
clear that there is no theory predicting with accuracy
the observed variation of experimentally results for
all percentages of volume fraction. A final observa-
tion is that no critical filler weight fraction is
observed. From all models applied, Papanicolaou
PSM model and Leidner & Woodhams models pre-
dict with quite satisfactory accuracy the experimen-
tal values for the flexural strength.

Application of the IM model

Figure 7 shows the variation of the flexural modulus
with filler-volume fraction. A comparison between
experimental values and predictions as derived from
different theories is shown. Bending Modulus exper-
imental values are increasing continually with filler
volume fraction. As can be seen, from all models
applied, only Papanicolaous’ Interphase model,

Figure 4 SEM photomicrographs for the polymer epoxy
reinforced particulate reinforced with 16% vf aluminum
particles.

Figure 5 SEM photomicrographs for the polymer epoxy reinforced particulate reinforced with 22.9% vf aluminum
particles.
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Einsteins; and Kerners’ models predict with high
accuracy respective experimental results.

Application of the RPM model

Figure 8 depicts the influence of the existence of
notch on specimens’ strength for different volume
fractions of aluminum particles. The main observa-
tion is that for all percentages of reinforcements,
maximum strength is decreasing with notch’s length
(which was expected, because specimens’ fracture

energy decreases with notches’ length). Another
important observation is that strength is decreasing
with the percentages of fillers. Thermal coefficient of
epoxy and these of aluminum particles is quite dif-
ferent so around particles stresses were concentrated
as a result strength to decrease.
In connection with the previous, in Figure 9, it can

be observed that bending modulus is decreasing
with notches’ length for all particles volume frac-
tions and also it is decreasing with the decrease of
reinforcements’ percentages. Aluminum particles
have much higher modulus in comparison with

Figure 6 Comparison between experimental values and
theoretical predictions as derived from several theories for
the strength of the aluminum particle-epoxy matrix com-
posites investigated.

Figure 7 Comparison between experimental values and
theoretical predictions as derived from several theories for
the Young’s modulus of the aluminum particle-epoxy
matrix composites investigated. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.
com.]

Figure 8 Variation of flexural strength with notches’
length for different percentages of reinforcement. [Color
figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

Figure 9 Variation of bending modulus with notches’
length for different percentages of reinforcement. [Color
figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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Figure 10 Comparison between experimental and analytical results as derived from the application of the RPM model
for the neat resin. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 11 Comparison between experimental and analytical results as derived from the application of the RPM model
for the resin reinforced with 2.3% Vf aluminum particles.

Figure 12 Comparison between experimental and analytical results as derived from the application of the RPM model
for the resin reinforced with 4.7% Vf aluminum particles.
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Figure 13 Comparison between experimental and analytical results as derived from the application of the RPM model
for the resin reinforced with 10% Vf aluminum particles.

Figure 14 Comparison between experimental and analytical results as derived from the application of the RPM model
for the resin reinforced with 16% Vf aluminum particles.

Figure 15 Comparison between experimental and analytical results as derived from the application of RPM for the resin
reinforced with 22.9% Vf aluminum particles.
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polymer epoxy modulus and so as volume fraction
is increasing, modulus is increasing too.

Figures 10–15 depict the comparison between ex-
perimental results and analytical predictions as
derived from the application of the RPM model for
different notches’ lengths and for different percen-
tages of reinforcements. From all figures, it is clear
that there is a fair agreement between experimental
results and respective RPM predictions.

CONCLUSIONS

In the present investigation, the static bending behav-
ior of notched and un-notched aluminum-filled epoxy
particulate composites has been experimentally deter-
mined. The influence of particle-volume fraction on
the static behavior of the particulate composites is
thoroughly studied. A comparison between experi-
mental and theoretical values predicted by several
existing in literature models as well as by the inter-
phase model previously developed by the first author
for the evaluation of the elastic modulus in particulate
composites has been done. From the whole work the
following conclusions can be deduced:

Flexural strength decreases almost continuously
with the filler-volume fraction due to the agglomera-
tions existed and observed through SEM photomi-
crographs. Papanicolaou and Leidner & Woodhams
models predict with quite satisfactory accuracy the
flexural strength of particulates.

Bending modulus as derived from experiments is
increasing with filler-volume fraction and that tend-
ency was predicted by applying several different
theoretical models from which only three of them
predict with high accuracy respective experimental
findings. These models are Papanicolaous’,
Einsteins’, and Kerners’ models.

Bending modulus is decreasing with notches’
length for all particles volume fractions and also it is
decreasing with the increase of reinforcements’
percentages.

Finally, a fair agreement between experimental
results and the RPM predictions for both the bend-
ing modulus and the flexural strength for different
notches’ length and percentages of reinforcements
was found.
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